
28 570684 Ch22.qxd 3/31/04 2:59 PM Page 285

Chapter 22: Functions That Actually Funct 285
Type the source code for IQ.C into your editor. The new deal here is the
getval() function, which returns a value by using the return keyword. (Does
that look familiar? I tell you more in a second!)

Save the source code file to disk as IQ.C.

Compile. Run.

Here’s what the sample output may look like, using fictitious figures for myself:

Enter your age:33
Enter your weight:175
Enter your area code:208
The computer estimates your IQ to be 27.000000.

Of course. I knew my IQ was that high. I’m not boasting or anything. It’s only
an estimate, after all.

� By using this formula, only old, fat people living in low-numbered area
codes can get into Mensa.

� This program has some problems. For example, the IQ value that’s calcu­
lated should be a floating-point number, and it’s not (unless your age,
weight, and area code are very special). This problem is fixed in the
nearby sidebar, “Fixing IQ.C by using the old type-casting trick.”

� Note how getval() is defined as an integer function. Inside getval(),
an integer value is produced by the atoi() function. It’s saved in the
x variable, which is then returned to the main function by using the
return(x); statement. Everything is an integer, so the function is of
that type as well.

� In the main() function, getval() is used three times. The values it pro­
duces (what it functs) is saved in the age, weight, and height integer
variables, respectively.

� Yeah, you probably lied too when you entered your weight. Don’t! The
more tumid you are, the smarter the program makes you.

Return to sender with the
return keyword
Functions that return values need some type of mechanism to send those
values back. Information just can’t fall off the edge, with the compiler assum­
ing that the last curly brace means “Hey, I must return the variable, uh, x.
Yeah. That’s it. Send x back. Now I get it.”

